Productive (€] ES

Make Access Security a Joy

COM+'s role-based security
approach enormously simplifies
implementing and maintaining
your application’s security.

by Juval Lowy

e Windows 2000
e \isual C++ 6.0

erhaps nothing epitomizes the difference be-
tween developing a distributed enterprise-wide
system using COM+and developing one using DCOM
like the COM+ security service. COM+ provides an
easy-to-use administrative security infrastructure that
makes configuringand enforcing securityajoy. COM+
security is based on a new, intuitive security concept
called role-based security, which enormously simpli-
fies managing and configuring your application’s se-
curity. COM+ security enables you to leave all secu-
rity-related functionality outside the scope of your
components and configure security administratively.
Roles are used for access control, and declarative
attributes are used for the rest of the security settings.
A role is composed of a symbolic category of users
who share the same security privileges. When you
assign a role to a component, you are granting access
to that component to whomever is a member of that
role. When a user who was not granted access (is not
a member of the role) tries to invoke a method on that
component, the method invocation will fail with the
error code E_ACCESSDENIED (“Permission De-
nied” in Visual Basic). COM+ lets you assign more
than one role to a component, and in fact, you can
assign roles to interfaces and methods as well. You
configure your access security policy administratively
using the COM+ Explorer. This article explains how
to use role-based security, both declaratively and pro-
grammatically, and how to design role-based security
effectively. In future articles, I will address other
security aspects, such as security pitfalls, application-
level security settings, and how security ties in with

other COM+ services.

46 | VISUAL C++ DEVELOPERS JOURNAL FEBRUARY 2001 | www.vcdj.com

e Microsoft Platform SDK

The best way to explain role-based security is simply
to demonstrate it. Suppose you have a COM+ bank
application, which contains one component—the
bank component. The bank component supports two
interfaces that allow users to manage bank accounts
and loans (download Listing 1 from the VCDJ Web
site; see the Go Online box for details).

During the requirements-gathering phase of prod-
uct development, you discover not every user of the
application can access every method. In fact, there are
four kinds of users: a bank customer, a bank teller, a
bank loan consultant, and a bank manager. The bank
manager is the most powerful user and can access every
method on every interface of the component. The bank
teller can accessall the methods of the IAccountsManager
interface but is not authorized to deal with loans and
cannot access any method of the ILoansManager inter-
face. Similarly, the loan consultant can access any
method of the ILoansManager interface, but cannot
access any method of the [AccountsManager interface.
A consultant is never trained to be a teller.

Finally, the bank customer can access some of the
methods on both the interfaces. The customer can
transfer funds between accounts and determine the
balance on a specified account, but cannot open a new
account or close an existing one. The customer can
make a loan payment, but cannot apply for a loan or
calculate the payment.

If you enforced this set of security requirements on
your own, you would face a programming nightmare.
You would have to remember who is allowed to access
what and couple the objects to the security policy. The
objects would have to verify who the caller is and

PRODUCTIVE COM+

whether the caller has the credentials to access the
objects. The resulting solution would be fragile—
imagine the work you would have to do if these
requirements changed.

Fortunately, COM+ makes managing such secu-
rity-access policy a joy. After importing the bank
component to a COM+ application (be it server or a
library application), you need to define the appropri-
ateroles for thisapplication. Every COM+ application
hasa folder called Roles. To add a new role, expand the
Roles folder, right-click on it, and select New from the
context menu. Type Bank Manager in the dialog box
that comes up and click on OK. In the Roles folder,
you should see a new item called Bank Manager. Add
the remaining roles: Customer, Teller, and Loan Con-
sultant. The application should look now like Figure 1.

You can now add users to each role. Every role has
a Users folder, which lets you add registered users from
your domain or work group. For example, navigate to
the Users folder of the Customer role, right-click on
the folder, and select New from the context menu.
This will bring up the standard Windows dialog box
for selecting users. Select the users that are part of the
Customer role, such as “Joe Customer.” You can
populate this role and the remaining roles in the bank
application with their users.

The next step is to grant access to components,
interfaces, and methods for the various roles in the
application, according to the bank application’s re-
quirements. Display the bank component properties
page, and select the Security tab. It contains a list of
every role defined for this application. Check the Man-
ager role to allow a manager access to all the interfaces
and methods on this component. Ensure that the
“Enforce component level access check” check box
under Authorization is selected. This check box is your
component-access security master switch, instructing
COM+ to verify participation in roles before accessing
this component. Next, configure security for the inter-
face level. Display the IAccountsManager interface
properties page, and select the Security tab.

Select the Teller role to grant this role access to all
the methods of this interface. The upper portion of the
interface Security tab contains inberited roles, which
are roles that were granted access at the component
level and therefore have access to this interface, as well.
Even if the Bank Manager role is not checked at the
IAccountsManager interface level, that role can still
access the interface.

Similarly, you can configure the [LoansManager in-
terface to grant access to the Loan Consultant role. The
Bank Manager should also be inherited in that interface.
Note that the loan consultant cannot access any method

THE BANK APPLICATION’S ROLES FOLDER

(ant Se

W T

Bank Manager Customer

=) ﬁ COM+ Applications
=3 Q Bank App
| E-@ Components

Loan
Consultant

| B ° Bank Component
i =@ Interfaces
-2 1AccountsManager
=] (&3 Methods
CloseAccount
GetBalance
h OpenAccount
L TransferMoney
i | &% ILoansManager
=3 Methods
&8s Apply
| CalcPayment
i MakePayment
i {& subscriptions

Bank Manager
Customer
Loan Cansult:

Figure 1 | There are four roles—Bank Manager, Customer, Loan Consultant,
and Teller—listed in the right pane. Each role represents a group of users
directly from the application domain. The role name is just a string. The
developer is responsible for assigning meaningful role names and configuring
the role as semantic at the component, interface, and method levels.

on the IAccountsManager interface, and the teller cannot
access any method on the JAccountsManager interface,
just as the requirements stipulate.

Finally, you can configure access rights at the method
level. A customer should be able to invoke the
GetBalance() and TransferMoney() methods on the
[AccountsManager interface and MakePayment()
method on the ILoansManager interface. Granting
access at the method level is very similar to the interface
or component level. For example, to configure the
GetBalance() method, display this method’s properties
page, select its Security tab, and check the Customer
role. The method Security tab shows inherited roles
from the interface and component levels. COM+ dis-
plays roles inherited from the component level using a
component icon, and roles inherited from the interface
level using an interface icon.

Because of the inherited nature of roles, you can
use a simple guideline for configuring them: Put the
more powerful roles upstream and the more restricted
roles downstream.

Role-Based Security Benefits

COM-+ role-based access control gives you (for most
practical purposes) ultimate flexibility with zero cod-
ing because access control at the method level is usually
granular enough. Role-based security offers a scalable
solution that does not depend on the number of
system users. Without it, you would have to assign

www.vcdj.com | VISUAL C++ DEVELOPERS JOURNAL FEBRUARY 2001 | 47

access rights for all objects and resources manually, and in
some cases you'd have to impersonate users to find out
whether they have the sufficient credentials. Configurable
role-based security is an extensible solution that makes modi-
fying a security policy easy. Like any other requirements, the
security requirements of your application are likely to change
and evolve over time, and now you have the right tool to
handle it productively.

Roles map directly to terminology from your application
domain. As partof the normal developmentlife cycle, you should
not only discover interfaces and classes during the requirements
analysis phase, but also aspire to discern user roles and privileges.
Focus your analysis efforts on discovering roles users play that
distinguish them from one another. As you have seen in the bank
example, roles work very well when you need to characterize
groups of users based on the actions they can perform.

But roles don’twork very well when access decision rests on
the identity of a particular user (for example, only if the bank
teller is Mary Smiling do you allow the teller to open an
account), or on some special information regarding the nature
of a particular piece of data (for example, bank customers
cannot access accounts outside the country). Role-based
security protects access to middle-tier objects. Middle-tier
objects should be written to handle any client and access any
data. Basing your object behavior on particular user identities
makes your system inflexible and unscalable, and forcing your
objects to know intimate details about the data does the same.

When you want to design effective roles, try to avoid a
complex role-based access policy that has many roles and users
allocated to multiple roles. Role-based security should be a
straightforward solution, with crisp distinctions between roles.
The simpler and clearer the solution, the more robust and
maintainable it will be. For example, avoid defining roles with
ambiguous criteria for who belongs to them. Your application
administrator should be able to map users to roles instantly. Use
meaningful, self-evident role names, borrowing as many terms
and vocabulary directly from the application domain as pos-
sible. For example, Super User is a bad user name whereas Bank
Manager is a good name, despite the fact that your application
would function just fine with the former.

Occasionally, you will be tempted to define numerous roles,
trying to model a real-life situation as closely as possible. Maybe
different branches of the bank have different policies for what
tellers are permitted to do. Try to collapse roles as much as
possible. You can do this either by re-factoring your interfaces
(deciding on what methods will be on what interface and which
component supports which interface) or defining new inter-
faces and components. Avoiding numerous (more than a
dozen) roles will also improve performance. If you have many
roles, COM+ must scan the list to determine whether the caller
is a member of a role that has access for each call.

Programmatic Role-Based Security

Sometimes administrative role-based security it not granular
enough for the task at hand. Consider a situation where your
application maintains a private resource (such as a database)

PRODUCTIVE COM+

R ESOURCES

that does not expose any public in-
terfaces directly to the clients. You
still want to allow only some callers
of a method to access the resource

® COM+ Security under

while denying access to other callers MSDN .
who are not members of a specific 2 Pr{)grfmmmg COM:
Security” by Yasser

role. The second (and more com-
mon) situation is when a method is
invoked on your objectand you want
to know whether the caller is a mem-
ber of a particular role so you can handle the call better.

For instance (consider the bank example), one of the
requirements is that a customer can transfer money only if the
sum involved is less than $5,000, whereas managers and
tellers can transfer any amount. Declarative role-based secu-
rity goes down only to the method level (not the parameter
level), and can only assure you that the caller is a member of
at least one of the roles you granted access to.

To implement the requirement, you must find out the
caller’s role programmatically. Fortunately, COM+ enables
you to do just that. Every method call is represented by a
COM:+ call object. The call object implements an interface
called ISecurityCallContext, obtained by calling CoGet-
CallContext(). ISecurityCallContext provides a method called
IsCallerInRole(), which lets you verify the caller’s role mem-
bership. Download Listing 2 to see how to implement the
new requirement using the call object security interface.
(Note thatIsCallerInRole() is available on IObjectContext as
well, a legacy from MTS.)

Security in a modern system is not an afterthought or a nice-
to-have (“we will do it in the next release”) feature, nor is it the
realm ofaknowledgeable few. You must design security into your
COM+ application and components from day one, much the
same way you design concurrency, threading model, factor out
your interfaces, and allocate interfaces to components.

column May 2000)

About the Author

Juval Lowy is a seasoned software architect. He spends his time
publishing and conducting classes and conferences on component-
oriented design and COM/COM+. He was an early adopter of COM, and
has unique experience in COM design. This article is based on excerpts
from his upcoming book COM+ and .NET (O'Reilly) scheduled for
release in spring 2001. E-mail him at idesign@componentware.net.

Use these DevX Locator+ codes at www.vcdj.com to go

directly to these related resources.

V0102 Download all the code for this issue of VCDJ.
VC€0102PC Download the code for this article separately. This
article’s code includes the sample bank application.
VC0102PC_T Read this article online. DevX Premier Club
membership is required.

- Want to subscribe to the Premier Club? Go to

- www.devx.com.

www.vcdj.com | VISUAL C++ DEVELOPERS JOURNAL FEBRUARY 2001 | 49

component services in the

Shohoud (VCDJ Middle Tier

